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Abstract.—We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent
contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares
(GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understand-
ing the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in
comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model.
In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable
should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyn-
crasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope
parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory
and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we
discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to
the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives. [Comparative
methods; generalized least squares; independent contrasts; regression.]

Phylogenetic comparative methods provide key tools
for studies of trait evolution and have been applied
in many studies of relationships of species to their en-
vironments and correlated evolution of traits among
species (Harvey and Pagel 1991; Garland et al. 1999).
Felsenstein’s (1985) phylogenetically independent con-
trasts (PIC) method has been widely applied in the
literature to analyze cross-species data sets by linear re-
gression and correlation methods. It has probably been
too successful in that the enthusiastic application of PICs
has greatly outpaced our theoretical understanding of
the method and its relations to the rest of statistical
theory. Several authors have commented that the PIC
procedure produces identical results to a generalized
least squares (GLS) linear model if one assumes a Brow-
nian motion model of evolution for the traits in ques-
tion in the latter (see Garland and Ives 2000; Rohlf 2001).
One further disadvantage is that the PIC procedure does
not automatically give an estimate of the intercept β0,
but this can be calculated (Garland et al. 1993; Garland
and Ives 2000). The purpose of this paper is to clarify
the relationship between PIC and GLS procedures, and
hence to elucidate the use of phylogenies for regression
analyses in general, with particular attention to the case
where the phylogeny may be in error.

It is clear that phylogenetic covariance is very com-
mon in cross-species data (Freckleton et al. 2002;
Blomberg et al. 2003). This means that phylogenetic co-
variance must be considered in analyses of species traits
(via regression or correlational methods) if the aim is to
obtain unbiased and minimum variance estimators of
cross-species relationships among variables. This is true
whether or not the aim is to make inferences on adap-
tation or trait coadaptation. Early developers of phy-
logenetic comparative methods emphasized the study

of adaptation; however, there is still contention over
whether it is possible to use phylogenetic comparative
methods to study processes of adaptation (Leroi et al.
1994; Doughty 1996; Martins 2000; Kluge 2005).

Phylogenetic covariance is a property of the data
not (necessarily) a property of the scientific hypothe-
ses under investigation. Thus, phylogenetic compar-
ative methods are similar in many ways to the
analysis of time-series or geostatistical data (Ives and
Zhu 2006). All 3 data types challenge the researcher to
deal with data that break the usual statistical assump-
tion of independence. Here, we provide a proof that the
PIC method is formally identical to phylogenetic gen-
eralized least squares (PGLS). We discuss the frequen-
tist properties of the resulting regression estimators and
suggest a Bayesian approach.

GLS VERSUS PIC

Here and throughout the rest of the paper, we discuss
GLS and PIC regressions that are bivariate only, how-
ever, the results generalize to multiple regression quite
easily. The proof of the equivalence of GLS and PIC re-
gression has been described as “awkward” (Rohlf 2001),
however, the result is well known among comparative
methods researchers. Grafen (1989) provides a proof of
a similar result. Garland and Ives (2000) also provide
an indication of the equivalence of GLS and PIC esti-
mators. We provide a new proof in Appendix 1. Our
proof is notationally clear, relying only on some sim-
ple matrix algebra. We prove that β̂GLSβ̂GLSβ̂GLS = β̂PICβ̂PICβ̂PIC for the
simplest case: one tip species and one ancestor. We then
show by strong induction (e.g., Seroul 2000) that the
result holds for any arbitrary tree. As a demonstration
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for readers who do not find the proof accessible, the
simple case of a 2-species tree is given below with in-
termediate steps. Such a demonstration is pedagogically
useful when examining the similarities and differences
between PIC and GLS estimators. All the mathemat-
ics was performed using the Axiom computer algebra
system (Jenks and Sutor 1992).

Consider 2 species a and b joined to a root node with
branches v1 and v2, respectively. Species a has trait val-
ues (xa, ya) and species b has trait values (xb, yb). We are
interested in the regression of y on x, accounting for phy-
logenetic covariance. Using the PIC algorithm, only one
contrast exists for the species a versus species b compar-
ison. However, we can still fit the regression because it is
forced through the origin. Since there are only 2 points
(including the origin), the residual variance σ2 = 0. The
value for the contrast for each variable x and y is just

xb−xa√
v2+v1

and yb−ya√
v2+v1

. Now, the regression of yyy PICs on X
PICs through the origin is

β̂̂β̂β= (XXX
′

PICXXXPIC)
−1XXX

′

PICyyyPIC, (1)

where XPICXPICXPIC and yyyPIC are vectors of the independent
contrasts calculated for the explanatory and response
variables, respectively. We use uppercase XXX for the ex-
planatory variable to be consistent with the terminology
for GLS, as XGLSXGLSXGLS is a matrix, whereas XPICXPICXPIC is a column
vector. The “′” refers to the transpose of a vector, in this
case X′PICX′PICX′PIC means XPICXPICXPIC is transposed from a column vec-
tor to become a row vector. Note that for the two-taxon
case, XPICXPICXPIC and yPICyPICyPIC both have a length of 1.

Substituting the contrasts into Equation (1), we obtain

β̂PICβ̂PICβ̂PIC =

(
xb − xxxa√
v1 + v2

xb − xa√
v1 + v2

)−1( xb − xa√
v1 + v2

)′( yb − ya√
v1 + v2

)

=

(
v2 + v1

(xb − xa)2

)(
xb − xa√
v1 + v2

)(
yb − ya√
v1 + v2

)

=
yb − ya

xb − xa
, (2)

which is also just the ordinary least squares (OLS) esti-
mator in this case.

The GLS linear model is

yyy=XXXβββ + εεε, εεε∼MVN(000,σ2ΣΣΣ), (3)

where XXX is a two-column matrix with ones in the first
column to account for the intercept. Values for the ex-
planatory variable are in the second column of XXX. yyy is a
column vector and ΣΣΣ is the matrix describing the evolu-
tionary covariance of the data due to common ancestry.
εεε is a column vector of errors, multivariate normally dis-
tributed, with scaling constant σ2 and with a mean of 0.
βββ is a column vector of parameters, of length 2 (intercept
and slope). The GLS estimator is

β̂GLSβ̂GLSβ̂GLS = (XXX
′ΣΣΣ−1XXX)−1XXX′ΣΣΣ−1yyy. (4)

Equivalently, we can transform Equation (3) to achieve
independent errors by premultiplying by ΣΣΣ

−1
2 to form

XXX∗ and yyy∗ and then use the OLS estimator on the trans-
formed data to obtain the GLS estimates for β̂:

β̂GLSβ̂GLSβ̂GLS = (XXX
∗′XXX∗)−1XXX∗

′

yyy∗. (5)

For the 2-species case, assuming a Brownian motion

model of evolution, ΣΣΣ is just

(
v1 0
0 v2

)

. Thus, substitut-

ing values for XXX, yyy, and ΣΣΣ into Equation (4), we have

β̂GLSβ̂GLSβ̂GLS =

((
1 xa

1 xb

)′(v1 0
0 v2

)−1(1 xa

1 xb

))−1

×

(
1 xa

1 xb

)′( 1
v1

0

0 1
v2

)(
ya

yb

)

=

((
1
v1

1
v2

xa
v1

xb
v2

)(
1 xa

1 xb

))−1(
1 1
xa xb

)( 1
v1

0

0 1
v2

)(
ya

yb

)

=




1
v1

+ 1
v2

xa
v1

+ xb
v2

xa
v1

+ xb
v2

x2
a

v1
+ x2

b
v2





−1(
1 1
xa xb

)( 1
v1

0

0 1
v2

)(
ya

yb

)

=
1

(xb − xa)
2

(
v1x2

b + v2x2
a −v1xb − v2xa

−v1xb − v2xa v2 + v1

)

×

(
1 1
xa xb

)( 1
v1

0

0 1
v2

)(
ya

yb

)

=
1

xb − xa

(
v1xb −v2xa

−v1 v2

)( 1
v1

0

0 1
v2

)(
ya

yb

)

=
1

xb − xa

(
xb −xa

−1 1

)(
ya

yb

)( xbya−xayb

xb−xa
yb−ya

xb−xa

)

.

We have now arrived at the important conclusion: The
estimator of the regression slope for GLS is the same as
that for PIC, arrived at previously. This is seen by com-
paring the second element of the GLS result (the slope
element of vector βGLSβGLSβGLS) above, with the PIC estimator
βPICβPICβPIC in equation (2). Comparing the slope parameters
for the two-taxon case does not mean that the 2 estima-
tors are always identical for other sets of trees and trait
data. This is the result that is proved in Appendix 1, The-
orem A1. Further, the GLS intercept can also be recov-
ered from the PIC analysis (Garland et al. 1993; Garland
and Ives 2000), further confirming that the 2 modelling
approaches are equivalent. This result is confirmed in
Appendix 1 in Theorem A3.

ADVANTAGES AND LIMITATIONS

Algebraic evaluation of the equivalence of PIC and
GLS for more than 2 species becomes tedious. For ex-
ample, for the 3-species case with species a, b, and c and
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with a and b more closely related to each other than to c,
β̂PICβ̂PICβ̂PIC has 16 terms in the numerator and 12 terms in the
denominator. β̂GLSβ̂GLSβ̂GLS has 21 terms in the numerator and
15 terms in the denominator. Few terms can be cancelled
out, although the equivalence can easily be checked by
substitution.

Compared with the calculation of β̂PICβ̂PICβ̂PIC, computa-
tion of β̂GLSβ̂GLSβ̂GLS (above) is more tiresome and involves
the inversion of ΣΣΣ. However, the result is equivalent
and comes with the added bonus of the estimator for
the intercept. It is convenient that the PIC algorithm
does not require an explicit inversion of the phyloge-
netic variance–covariance matrix ΣΣΣ (i.e., this inversion is
implicit in the algorithm rather than being calculated di-
rectly). In any case, inverting the phylogenetic variance–
covariance matrix is generally a stable computation, as
phylogenetic variance–covariance matrices are not sin-
gular. PIC may be particularly attractive when dealing
with very large data sets as the inversion of large ma-
trices can be computationally difficult. However, that
advantage may be somewhat offset by the initial com-
putation of the contrasts.

DISCUSSION

Because of the equivalence relationship between GLS
and PIC, we are now in a better position to understand
the behavior of PIC. The first term in Equation (3) rep-
resents the systematic part of the model for yyy in terms
of the parameters of βββ and the explanatory variable XXX.
The second term, εεε, is the term of interest when try-
ing to understand the role of phylogenetic covariance
due to common ancestry. As stated above, εεε is assumed
to be Gaussian with zero mean and covariance σ2ΣΣΣ,
where σ2 is a scaling constant and ΣΣΣ is the phyloge-
netic variance–covariance matrix. So σ2ΣΣΣ describes the
variance–covariance structure of the residuals. ΣΣΣ and σ2

enter into the calculation of V̂ar(β̂)V̂ar(β̂)V̂ar(β̂), which is the es-
timate of the variance of β̂̂β̂β. The true estimator of the
variance of β̂̂β̂β, Var(β̂)Var(β̂)Var(β̂) has the following form (Rao and
Toutenburg 1995):

Var(β̂)Var(β̂)Var(β̂) = σ2(XXXΣ−1Σ−1Σ−1XXX)−1, (6)

where σ2 has the unbiased estimator

s2 =
(yyy−XXXβ̂̂β̂β)′ΣΣΣ−1(yyy−XXXβ̂̂β̂β)

n− k
, (7)

whereit n is the sample size, that is, the number of
species and k is the column rank of XXX. Hence, the esti-
mator for the variance of β̂̂β̂β is just:

V̂ar(β̂)V̂ar(β̂)V̂ar(β̂) = s2(XXXΣ−1Σ−1Σ−1X)−1. (8)

If the magnitude of the slope term in βββ is large rel-

ative to σ2 and V̂ar(β̂)V̂ar(β̂)V̂ar(β̂), then the existence of phyloge-
netic covariance will have little effect on the estimation
and inference for βββ. Alternatively, if the magnitude of

the βββ slope is small and σ2 is moderate to large, esti-
mation and inference for βββ will be strongly affected by
phylogenetic covariance. This means that if the strength
of the effect of XXX on yyy is large relative to the resid-
ual error, it does not much matter whether we estimate
βββ by including phylogenetic covariance (as in GLS) or
by ignoring it (as in OLS). In this case, conclusions using
GLS or OLS will be very similar. It is important to under-
stand that hypotheses about the relationship between XXX
and yyy are concerned with the systematic part of the re-
gression model and that this is distinct from hypotheses
about phylogenetic effects arising from common ances-
try, which are concerned with covariance of the resid-
uals. Failure to understand this point may have caused
some of the confusion in the literature (e.g., Harvey et al.
1995a, 1995b; Westoby et al. 1995a, 1995b, 1995c).

Another issue raised by the correspondence of GLS
and PIC analyses is the interpretation of independent
contrasts calculated for explanatory variables. The GLS
model has the usual regression assumption that the ex-
planatory variables are fixed and without error. The
response yyy is a random variable conditioned on the
explanatory variables. Hence, the variance–covariance
matrix ΣΣΣ applies to the response variable only. Appli-
cation of the PIC algorithm to explanatory variables
should be regarded as a mathematical idiosyncrasy in
order to obtain β̂PICβ̂PICβ̂PIC. Note that this interpretation is at
odds with Felsenstein’s (1985) derivation. In that paper,
2 traits were assumed to have evolved along a common
phylogeny, so PICs were calculated for each trait and
then OLS regression analysis was conducted (through
the origin). However, even in such a case, the OLS re-
gression assumptions imply that the contrasts for the ex-
planatory variable are assumed fixed and without error.
Of course, many (perhaps most) uses of regression in
comparative biology are on traits that have evolved and
exhibit phylogenetic signal (or covariance) and may be
measured with some error. Such uses of OLS or GLS re-
gression in these cases is generally permitted, although
the magnitude of the measurement error in explanatory
variable should be small compared with the magnitude
of error in the response variable. If it is known that
there is serious error in measurement of explanatory
variables, then an “errors-in-variables” model should
be used so that phylogenetic covariance is incorporated
into both explanatory and response variables (see, e.g.,
Carroll et al. 2006; Ives et al. 2007). The situation is dif-
ferent for correlation analyses: Hypothesis tests involv-
ing Pearson correlation coefficients assume that the data
are bivariate Normal, so both the explanatory and re-
sponse variables are considered as random variables.
Construction of PICs is then appropriate for the (non-
central) Pearson correlation analysis of 2 trait variables
under Felsenstein’s (1985) evolutionary model.

It has been suggested that different branch lengths can
be used for different characters in a PIC multiple regres-
sion (Garland et al. 1992). By the Gauss–Markov–Aitken
theorem, the GLS estimator for βββ (and by implication
the PIC estimator for βββ since they are identical) is the
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minimum variance unbiased estimator (MVUE). That is,
of all the unbiased estimates of β, the GLS estimator has
the minimum variance. Since the estimator is linear, it is
also the best linear unbiased estimator (BLUE) when ΣΣΣ
is known (e.g., Mittelhammer et al. 2000, p. 43), where
“best” means the estimator has the lowest mean square
error of all linear estimators (Note also that the OLS es-
timator, βββOLS, is also unbiased but does not have mini-
mum variance whenΣΣΣ=/ III, the identity matrix (see Rohlf
2006).). Failing to use the same branch lengths for the ex-
planatory variables implies that the resulting estimator
is no longer MVUE and BLUE and is not recommended.
Note also that the MVUE and BLUE properties do not
require that the residuals are Gaussian. This assumption
is only necessary if hypothesis tests are required. If the
residuals are not Gaussian and hypothesis tests are re-
quired, then different methods are required (e.g., Ives
and Garland 2010).

It is clear that we should do our best to use the MVUE
estimator, which requires knowledge of ΣΣΣ. The methods
and results of phylogenetic systematics give us ways to
estimate ΣΣΣ, however, we must ask how uncertainty in ΣΣΣ
can affect the properties of the estimators. This topic has
received little attention in the biological literature. The
general term for the use of GLS methods in compara-
tive biology is “phylogenetic” generalized least squares
(PGLS, e.g., Rohlf 2001). However, there is nothing
statistically special about the use of GLS methods for
phylogenetic data per se. What is important about the
use of GLS in comparative biology is that the phylo-
genetic variance–covariance matrix (ΣΣΣ) is actually an
estimate of the unobserved true variance–covariance
matrix. Thus, we should restrict the use of ΣΣΣ to refer to
the true phylogenetic variance–covariance matrix and
the estimate of this matrix is termed Σ̂̂Σ̂Σ. We shall use
this notation for the remainder of the paper. PGLS is
identical to methods that econometricians term feasible
generalized least squares or estimated generalized least
squares (EGLS) (Mittelhammer et al. 2000).

The necessary conditions for EGLS to have the same
properties as GLS (statistical consistency, unbiasedness,
efficiency with respect to the OLS estimator, and mini-
mum variance) have been discussed by Mittelhammer
et al. (2000) and are summarized below. The EGLS esti-
mator can be decomposed as in Equation (9):

β̂EGLSβ̂EGLSβ̂EGLS = (XXX
′Σ̂−1Σ̂−1Σ̂−1XXX)−1XXX′Σ̂−1Σ̂−1Σ̂−1yyy

=βββ + (XXX′Σ̂̂Σ̂Σ−1XXX)−1XXX′Σ̂̂Σ̂Σ−1εεε, (9)

where βββ and εεε are defined as for Equation (3). β̂̂β̂βEGLS is
an unbiased estimate of βββ if the last term in Equation (9)
(i.e., the regression of residuals on XXX) is 0, and this occurs
so long as the probability distribution of εεε is symmetri-
cal, so that the distributions of εεε and −εεε are identical
and centered at 0. This property is guaranteed by the
Brownian motion assumption. However, if the underly-
ing evolutionary model is a more complicated diffusion
process with a drift component, asymmetry in εεε and −εεε
will occur and β̂EGLSβ̂EGLSβ̂EGLS will be biased for βββ.

For the asymptotic properties of β̂EGLSβ̂EGLSβ̂EGLS to be the same
as those for β̂GLSβ̂GLSβ̂GLS, we require 2 additional conditions:

n−1XXX′Σ̂̂Σ̂Σ−1XXX − n−1XXX′ΣΣΣ−1XXX
p
−→ 0,

n−
1
2 XXX′Σ̂̂Σ̂Σ−1εεε− n−

1
2 XXX′ΣΣΣ−1εεε

p
−→ 0, (10)

where
p
−→ describes convergence in probability (see

Casella and Berger 2002). Equations (10) imply that
n−1XXX′Σ̂̂Σ̂Σ−1XXX can replace n−1XXX′ΣΣΣ−1XXX in the limit, and the
limiting distributions of n−

1
2 XXX′Σ̂̂Σ̂Σ−1εεε and n−

1
2 XXX′ΣΣΣ−1εεε are

the same. Of particular importance is that consistent
estimation of the elements of ΣΣΣ with estimator Σ̂̂Σ̂Σ does
not guarantee the properties described in Equation (10).
This is because each element in matrices n−1XXX′ΣΣΣ−1XXX and
n−

1
2 XXX′ΣΣΣ−1εεε may depend on all the unique entries in ΣΣΣ.

Further, the entries in ΣΣΣ are derived from the shared
branch lengths among taxa so from a practical view-
point, consistent estimation of all branch lengths is also
a necessary (though not sufficient) condition. It should
be noted that the conditions in Equation (10) cannot be
checked with cross-species data; there is no sense of con-
vergence of Σ̂̂Σ̂Σ toΣΣΣ as n, the number of species in the data
set, increases. This is because each new species adds
new covariance parameters to ΣΣΣ. However, it is possible
to consider convergence toΣΣΣ if we define convergence in
terms of the addition of new sequence data to the phy-
logeny estimation data set rather than of adding new
species to the trait data set.

Given the usual regularity conditions for GLS, and
the extra conditions in Equations (10), it follows that
β̂EGLSβ̂EGLSβ̂EGLS is generally asymptotically more efficient than
the OLS estimator β̂OLSβ̂OLSβ̂OLS. The proof of this relies on
comparing the covariance matrices of the limiting
distributions of the bias for β̂OLSβ̂OLSβ̂OLS and β̂EGLSβ̂EGLSβ̂EGLS (see
Mittelhammer et al. 2000). This result depends on
anticipating the true structure of ΣΣΣ and the correctness
of the convergence properties of Σ̂̂Σ̂Σ in Equations (10). If Σ̂̂Σ̂Σ
is incorrectly designed, the finite sampling properties of
β̂EGLSβ̂EGLSβ̂EGLS can be “considerably worse” than those of β̂OLSβ̂OLSβ̂OLS
(Mittelhammer et al. 2000). In particular, if ΣΣΣ has been
misspecified (e.g., because the underlying tree topology
or model of evolution is drastically wrong), β̂OLSβ̂OLSβ̂OLS can be
superior to β̂EGLSβ̂EGLSβ̂EGLS (and therefore β̂PICβ̂PICβ̂PIC) even asymptot-
ically. Fortunately, there has been some study of effects
of misspecification of ΣΣΣ. Revell (2010) demonstrates by
computer simulation how β̂GLSβ̂GLSβ̂GLS can be inferior to β̂OLSβ̂OLSβ̂OLS
in the situation where the true covariance structure is
independence, and the assumed covariance matrix is
derived from a phylogeny. Rao and Toutenburg (1995)
provide analytical expressions for the bias and loss of
efficiency introduced into β̂̂β̂β and σ̂2 by misspecification
of Σ̂̂Σ̂Σ, concentrating on the particular case where the
true ΣΣΣ = III (the Identity matrix, meaning values of 1 on
the diagonal for within-species variance, and 0 for all
off-diagonal covariances). Inaccuracies in the topology
have the most effect when species are moved across
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the root. Changes closer to the tips of the tree are less
drastic in their effects (see Martins and Housworth
2002; Symonds 2002). If branch lengths are transformed
so that there is no relationship between the magnitude
of contrasts and their standard deviation, Type I error
rates are acceptable (Diaz-Uriarte and Garland 1996).
In studies of real species and traits, we usually do not
know how accurate our estimation of ΣΣΣ may be. How-
ever, we can assess the robustness of our conclusions
by running several analyses that incorporate alternative
phylogenetic hypotheses (Donoghue and Ackerly 1996).

One recommendation that can be made is that both
β̂OLSβ̂OLSβ̂OLS and β̂PICβ̂PICβ̂PIC (or β̂GLSβ̂GLSβ̂GLS) should be reported in stud-
ies where the phylogenetic relationships of the study
species are only poorly known or if the phylogeny is
suspected to be in severe error. This is contrary to the ad-
vice given by Freckleton (2009). Although we agree with
this author in general on this issue, we believe that the
poor frequentist properties of EGLS when Σ̂̂Σ̂Σ is misspec-
ified suggest that reporting the OLS estimates is use-
ful in such problem cases. If the inferences for the OLS
and GLS models differ in their conclusions, then not
much can be said, except that a better estimate of ΣΣΣmay
be required. An alternative, suggested by a reviewer,
is to adopt a more flexible correlation structure for the
data such as the single parameter transformations using
Grafen’s ρ (Grafen 1989), Pagel’s λ (Pagel 1999) or the
Ornstein–Uhlenbeck model (Martins and Hansen 1997;
Blomberg et al. 2003). Models can then be fitted using
maximum likelihood (ML) or restricted maximum likeli-
hood (REML) methods. Although such single parameter
transformations can be very useful in controlling some
types of misspecification of branch lengths (e.g., Revell
2010), they cannot account for errors in tree topology.
Misspecification of the tree topology is still problematic
for comparative studies.

It has been recently pointed out that many models
in phylogenetic comparative analysis can be subsumed
within the framework of ordinary linear mixed-effects
models or generalized linear mixed-effects models
(Hadfield and Nakagawa 2010) and that many models
can be fitted efficiently with currently available software
using REML (Gilmour et al. 2009; Pinheiro et al. 2009) or
Bayesian methods (Hadfield 2010). It has further been
argued that REML is superior to GLS because of the
perceived bias and inflexibility of GLS (Hadfield and
Nakagawa 2010). However, in the situation where there
are no random effects, such as in Equation (3), and the
variance–covariance matrix Σ̂̂Σ̂Σ is fixed (i.e., the matrix
does not contain parameters to be estimated, such as
Grafen’s ρ or Pagel’s λ), the REML estimator is the same
as the GLS estimator. Indeed, the key innovation of
GLS for dealing with correlated data is the mathemat-
ical foundation for all modern methods for modeling
multivariate Normal data. As an example, the function
gls in the nlme package for R uses ML or REML to fit
models like Equation (3), but the underlying code still
uses the GLS “trick” of premultiplying the data matrix
by Σ̂̂Σ̂Σ

−1
2 and applying Equation (5) (Pinheiro and Bates

2000). In practice, sparse matrix methods are used to
perform this trick (Henderson 1976; Quaas 1976; Bates
and DebRoy 2004; Hadfield and Nakagawa 2010) to
avoid directly inverting Σ̂̂Σ̂Σ, which can be difficult when
sample sizes are large.

A natural way of dealing with phylogenetic uncer-
tainty, which avoids some of the problems of frequentist
criteria for evaluating GLS estimators, is to use Bayesian
methods (e.g., Box and Tiao 1973; Bernardo and Smith
2000; Carlin and Louis 2008). In the Bayesian paradigm,
all variables are considered random, and variables each
have a prior distribution that represents a statement
of the researcher’s prior knowledge and uncertainty
(Gelman et al. 2003). For Bayesian regression models,
Gaussian priors with zero mean and a large variance can
be used for βββ parameters. A uniform prior can be used
for σ (Gelman 2006).

Furthermore, whether taking a frequentist or a
Bayesian approach, we can use a Bayes estimator of βββ.
Bayes estimators are estimators that minimize the pos-
terior expected loss (Bernardo and Smith 2000). For sim-
ple loss functions, such as quadratic, linear, or 0–1 loss
functions, the Bayes estimators are the posterior mean,
median, and mode, respectively. Bayes estimators have
the advantage that they very often have excellent fre-
quentist properties (Robert 2007), so even if researchers
do not wish to formally adopt the Bayesian paradigm,
Bayes estimators can still be very useful. In a phyloge-
netic context, we envisage a collection of possible trees,
perhaps resulting from a phylogenetic analysis using
MrBayes (Huelsenbeck and Ronquist 2001) or BEAST
(Drummond and Rambaut 2007). This distribution of
trees can be sampled using the Metropolis–Hastings
algorithm, allowing us to integrate over all trees in
the collection, weighted in accordance to their pos-
terior probability of generating the comparative data.
Huelsenbeck and Rannala (2003) describe a similar
method for estimating character correlations and the
phylogeny simultaneously, however, our approach re-
lies on the a priori existence of a collection of trees. This
approach can work well and is easily implemented in
available software such as BUGS (Lunn et al. 2000) or
JAGS (Plummer 2003) (See Appendix 2). The Bayes es-
timators for βββ can be calculated directly from the poste-
rior distribution of βββ, with associated credible intervals.
We have also found that various elaborations of the ba-
sic regression model are possible (de Villemereuil and
Blomberg, unpublished manuscript).
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APPENDICES

Appendix 1: Proof of the Equivalence of the GLS and PIC
Estimators

For a given phylogenetic tree T with n > 1 species,
let ΣΣΣ denote the corresponding covariance matrix of
the species, which we assume is invertible. The invert-
ibility assumption holds for all positive-definite ma-
trices (Horn and Johnson 1985) of which phylogenetic
variance–covariance matrices are a subset. From a prac-
tical viewpoint, some positive-definite matrices are dif-
ficult to invert using numerical methods, such as from
trees that are very large, or have some very short inter-
nal branches. However, they are invertible in theory. xxx
and yyy are column n-vectors of explanatory and response
variables, respectively. Note that ΣΣΣ and Σ−1Σ−1Σ−1 are both
symmetric. Let 1 denote a column n-vector of ones and
define the following scalars:

S = 1′Σ−1Σ−1Σ−11,

A = 1′Σ−1Σ−1Σ−1xxx= xxx′Σ−11,

B = xxx′Σ−1Σ−1Σ−1xxx,

C = 1′Σ−1Σ−1Σ−1yyy= yyy′Σ−11,

D = xxx′Σ−1Σ−1Σ−1yyy.

Note that S is the sum of all entries in Σ−1Σ−1Σ−1. The PIC esti-
mator for the slope of the regression is given by

β̂PIC =
X′PICyyyPICX′PICyyyPICX′PICyyyPIC
X′PICXPICX′PICXPICX′PICXPIC

,

where XPICXPICXPIC and yyyPIC are column vectors (length
n − 1) of PICs, calculated for the explanatory and re-
sponse variables, respectively.

The GLS estimators for the intercept and slope of the
regression are given by

β̂ββGLS = (X
′Σ−1XΣ−1XΣ−1X)−1X′Σ−1XΣ−1XΣ−1X)−1X′Σ−1XΣ−1XΣ−1X)−1X′Σ−1Σ−1Σ−1yyyX′Σ−1Σ−1Σ−1yyyX′Σ−1Σ−1Σ−1yyy

=

(
S A
A B

)−1(
C
D

)

=
1

SB− A2

(
BC− AD
SD− AC

)

. (A.1)

Since we are only interested in the estimated slope, let
β̂s =

SD−AC
SB−A2 .

Theorem 1. The PIC and GLS estimators of the regression
slope are identical. That is, β̂PIC = β̂s.

Proof. We will prove that

X′PICyyyPICX′PICyyyPICX′PICyyyPIC =D− AC/S. (A.2)

Substituting XPICXPICXPIC for yyyPIC in Equation (A.2) gives
X′PICXPICX′PICXPICX′PICXPIC = B− A2/S, and the result will then follow.
In order to prove Equation (A.2), we also need to show
that the weighted means obtained from the tree satisfy

Xm = A/S and (A.3)

ym = C/S, (A.4)

with associated variance

Vm = 1/S. (A.5)

�

Example 2 For a phylogenetic tree with just 2 species,
then

ΣΣΣ=

(
v1 0
0 v2

)

, Σ−1Σ−1Σ−1 =

(
1
v1

0
0 1

v2

)

,

S=
1
v1

+
1
v2
,A=

x1

v1
+

x2

v2
,B=

x2
1

v1
+

x2
2

v2
,

C=
y1

v1
+

y2

v2
,D=

x1y1

v1
+

x2y2

v2
,

Xm =
x1v2 + x2v1

v1 + v2
, ym =

y1v2 + y2v1

v1 + v2
,Vm =

v1v2

v1 + v2
,

XPICXPICXPIC =

(
x1 − x2√

v1 + v2

)

and yyyPICyyyPICyyyPIC =

(
y1 − y2√

v1 + v2

)

.

Therefore,

SD− AC =
x1y1

v2
1

+
x2y2

v2
2

+
x1y1 + x2y2

v1v2
−

x1y1

v2
1

−
x2y2

v2
2

−
x1y2 + x2y1

v1v2

=
(x1 − x2)(y1 − y2)

v1v2
,

which implies that

D−
AC
S
=
(x1 − x2)(y1 − y2)

v1 + v2
.

Thus, Equations (A.2)–(A.5) hold for a tree with 2 nodes.
Thus, we have proved again the example in the intro-
duction.

The proof is by strong induction on the size of the
phylogenetic tree. Every phylogenetic tree with at least 2
species is represented as a combination of 2 smaller phy-
logenetic trees; we assume that Equations (A.2)–(A.5)
hold for the smaller trees and prove that they must then
also hold for the complete tree.
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Before considering the details of the inductive step,
we consider phylogenetic trees with only one species
(the basis case). Considered as an isolated node, such
a tree has a noninvertible covariance matrix. Thus, to
avoid division by zero, we assume that the tree contains
a branch of weight v > 0 from some unspecified an-
cestor. This is a departure from the convention that ev-
ery phylogenetic tree has at least two distinct branches
from the base node. The covariance matrix is then sim-
ply (v), with inverse

(
1
v

)
, and Equations (A.2)–(A.5)

hold trivially. Note that these equations are well defined
although β̂PIC and β̂s are not when n= 1.

For some n > 2, we now suppose that every phylo-
genetic tree with fewer than n species has an invertible
covariance matrix and satisfies (A.2)–(A.5). We consider
an arbitrary tree T containing n species and show that T
has an invertible covariance matrix and satisfies (A.2)–
(A.5). Since T (and every other tree with more than 1
species) is assumed to have at least 2 distinct branches
from its base node, we may regard T as the combina-
tion of 2 distinct phylogenetic trees T1 and T2, each with
fewer than n species, connected to the base node of T
by branches of weight d1 and d2, respectively. Note that
di = 0 is allowed, implying that the base node of Ti is
identical to the base node of T, so there is no upper limit
on the number of branches leading from the base node
of T. If Ti contains a single species, for i ∈ {1, 2}, then
the branch from the base node of T to that species is re-
garded as part of Ti; hence di = 0.

For i = 1, 2, define ni, ΣΣΣi, Ai, Bi, Ci, Di, xxxi, yyyi, and 1i
analogously to n, ΣΣΣ, A, B, C, D, xxx, yyy, and 1; note that Σ1Σ1Σ1
andΣ2Σ2Σ2 are invertible by the inductive assumption. Thus,
we have

n= n1 + n2, xxx=

(
xxx1

xxx2

)

, yyy=

(
yyy1

yyy2

)

and 1=

(
11

12

)

.

By our inductive assumption, Equations (A.2)–(A.5)
hold for both T1 and T2.

Let J = 11′ be an n × n matrix of ones (with J1 and
J2 defined analogously). By the Sherman–Morrison for-
mula (Bartlett 1951), we have that

ΣΣΣ =

(
Σ1Σ1Σ1 + d1J1 0

0 Σ2Σ2Σ2 + d2J2

)

, and hence

Σ−1Σ−1Σ−1 =



Σ
−1
1Σ
−1
1Σ
−1
1 −

d1Σ
−1
1Σ
−1
1Σ
−1
1 J1Σ

−1
1Σ
−1
1Σ
−1
1

1+d1S1
0

0 Σ2Σ2Σ2
−1−1−1 − d2Σ

−1
2Σ
−1
2Σ
−1
2 J2Σ

−1
2Σ
−1
2Σ
−1
2

1+d2S2



 .

This is well defined, so we have established that Σ is
invertible.

Let zzz ∈ {xxx,yyy, 1}. Then

1′Σ−1−1−1zzzΣ−1−1−1zzzΣ−1−1−1zzz = 1′1Σ
−1−1−1
1 zzz1Σ−1−1−1
1 zzz1Σ−1−1−1
1 zzz1 + 1′2Σ

−1
2 zzz2Σ−1
2 zzz2Σ−1
2 zzz2 −

d11′1Σ
−1−1−1
1Σ
−1−1−1
1Σ
−1−1−1
1 111′1Σ

−−−1
1 zzz1Σ−−−1
1 zzz1Σ−−−1
1 zzz1

1 + d1S1

−
d21′2Σ

−1−1−1
2Σ
−1−1−1
2Σ
−1−1−1
2 121′2Σ

−1−1−1
2 zzz2Σ−1−1−1
2 zzz2Σ−1−1−1
2 zzz2

1 + d2S2

=
11Σ

−1
1 zzz1Σ−1
1 zzz1Σ−1
1 zzz1

1 + d1S1
+

12Σ
−1−1−1
2 zzz2Σ−1−1−1
2 zzz2Σ−1−1−1
2 zzz2

1 + d2S2
.

Thus,

S =
S1

1 + d1S1
+

S2

1 + d2S2
,

A =
A1

1 + d1S1
+

A2

1 + d2S2
, and

C =
C1

1 + d1S1
+

C2

1 + d2S2
.

Likewise,

xxx′Σ−1zzzxxx′Σ−1zzzxxx′Σ−1zzz = xxx′1Σ1Σ1Σ1
−1−1−1zzz1 + xxx′2Σ2Σ2Σ2

−1−1−1zzz2 −
d1xxx′1Σ

−1−1−1
1xxx′1Σ
−1−1−1
1xxx′1Σ
−1−1−1
1 1111111

′
1Σ
−1−1−1
1Σ
−1−1−1
1Σ
−1−1−1
1 zzz1zzz1zzz1

1 + d1S1

−
d2xxx′2Σ2Σ2Σ2

−1−1−1121′2Σ2Σ2Σ2
−1−1−1zzz2

1 + d2S2
.

Hence,

B = B1 + B2 −
d1A2

1

1 + d1S1
−

d2A2
2

1 + d2S2
and

D = D1 + D2 −
d1A1C1

1 + d1S1
−

d2A2C2

1 + d2S2
.

By definition,

Xm =
Xm1(d2 + Vm2) + Xm2(d1 + Vm1)

d1 + d2 + Vm1 + Vm2

,

and so by the inductive assumption,

Xm =

A1
S1

(
d2 + 1

S2

)
+ A2

S2

(
d1 + 1

S1

)

d1 + d2 + 1
S1

+ 1
S2

=
A1(d2S2 + 1) + A2(d1S1 + 1)
S1(d2S2 + 1) + S2(d1S1 + 1)

=

(
A1

d1S1 + 1
+

A2

d2S2 + 1

)/(
S1

d1S1 + 1
+

S2

d2S2 + 1

)

=
A
S

.

Thus, Equation (A.3) holds; similarly for Equation (A.4).
Also by definition,

Vm =
(d2 + Vm2)(d1 + Vm1)

d1 + d2 + Vm1 + Vm2

=
(d2 + 1/S2)(d1 + 1/S1)

d2 + 1/S2 + d1 + 1/S1

=
(d2S2 + 1)(d1S1 + 1)

S1(d2S2 + 1) + S2(d1S1 + 1)

= 1/

(
S1

d1S1 + 1
+

S2

d2S2 + 1

)

= 1/S,

so Equation (A.5) holds.
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We now just need to prove the inductive step for
Equation (A.2).

From the PIC definition, we have

XPICXPICXPIC =






XPIC1XPIC1XPIC1

XPIC2XPIC2XPIC2
Xm1−Xm2√

Vm1 +Vm2 +d1+d2




 and

yyyPIC =






yyyPIC1

yyyPIC2
ym1−ym2√

Vm1 +Vm2 +d1+d2




 .

Therefore,

X′PICyyyPICX′PICyyyPICX′PICyyyPIC =X′PIC1
yyyPIC1

X′PIC1
yyyPIC1

X′PIC1
yyyPIC1

+ X′PIC2
yyyPIC2

X′PIC2
yyyPIC2

X′PIC2
yyyPIC2

+
(Xm1 − Xm2)(ym1 − ym2)

Vm1 + Vm2 + d1 + d2
.

Since Equations (A.2)–(A.5) hold for T1 and T2, then

X′PICyPICX′PICyPICX′PICyPIC = D1 −
A1C1

S1
+ D2 −

A2C2

S2

+

(
A1
S1
− A2

S2

)(
C1
S1
− C2

S2

)

1
S1

+ 1
S2

+ d1 + d2

= D1 + D2 −
d1A1C1

1 + d1S1
−

d2A2C2

1 + d2S2

−

(
A1

1+d1S1
+ A2

1+d2S2

)(
C1

1+d1S1
+ C2

1+d2S2

)

(
S1

1+d1S1
+ S2

1+d2S2

)

= D− AC/S.

In addition to the slope estimate, we can use the
weighted means Xm and ym generated by the PIC algo-
rithm to estimate the intercept.

Theorem 3. The first element of β̂ββGLS is equivalent to ym −
β̂PICXm (Garland et al. 1993).

Proof. By Theorem 1 and Equations (A.3) and (A.4),

ym − β̂PICXm =
BC− AD
SB− A2

, (A.6)

where the right-hand side of Equation (A.6) corresponds
to the first element of the vector in Equation (A.1).

Appendix 2: BUGS Code for Simple Bayesian Phylogenetic
Regression

The following BUGS code shows how to implement
Bayesian phylogenetic regression analyses for Open-
BUGS (Lunn et al. 2009) or JAGS (Plummer 2003). It
is assumed that there are N species, with explanatory
variable X and response variable Y. It is assumed there
are Ntree trees in the set of phylogenies derived from
some Bayesian phylogenetics software (e.g., BEAST or
MrBayes). These need to be converted to phylogenetic
variance–covariance matrices for example in R Devel-
opment Core Team (2011) using the vcv.phylo func-
tion in the ape package (Paradis et al. 2004). Also,
since the matrices need to be inverted as part of the
computation, it is more efficient to invert the matri-
ces first, say in R. They should then be saved as part
of the OpenBUGS data as a large 3-dimensional ar-
ray of size Ntree × N × N. This array is referred to
as invA in the code below. Anything after a “#” is a
comment.

model {
# Linear regression and multivariate normal likelihood
for ( i in 1 : N) {

mu[i] <- beta0+beta1∗X[i] # beta0 is the intercept
# and beta1 is the slope
# of the regression of
# Y on X

}
Y[1 : N] ˜ dmnorm (mu [] ,TAU[ ,]) # Y is multivariate normal

# with mean mu and precision
# matrix TAU

# Priors
beta0 ˜ dnorm (0, 1.0E−06) # uninformative priors
beta1 ˜ dnorm (0, 1.0E−06)
sigma ˜ dunif (0, 10) # See Gelman (2006)
tau <- 1/sigma ˆ 2 # tau is a scaling factor for the precision

# matrix
# We sample trees (precision matrices) with equal prior probability
# from invA
for (k in 1 : Ntree) {

p[k] <- 1/Ntree
}
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# Tree sampling and variance-covariance matrix construction
K ˜ dcat(p [])
for (i in 1:N) {

for ( j in 1:N) {
TAU[i, j] <- tau*invA[i, j, K] # calculate the

# precision matrix
}

}
}
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